首页> 外文OA文献 >Molecular dynamics study on the grain boundary dislocation source in nanocrystalline copper under tensile loading
【2h】

Molecular dynamics study on the grain boundary dislocation source in nanocrystalline copper under tensile loading

机译:拉伸载荷下纳米晶铜晶界位错源的分子动力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grain boundary (GB) is the interface between different oriented crystals of the same material, and it can have a significant effect on the many properties of materials. When the average or entire range of grain size is reduced to less than 100 nm, the conventional plastic deformation mechanisms dominated by dislocation processes become difficult and GBmediated deformation mechanisms become increasingly important. One of the mechanisms that can play a profound role in the strength and plasticity of metallic polycrystalline materials is the heterogeneous nucleation and emission of dislocations from GB. In this study, we conducted molecular dynamics simulations to study the dislocation nucleation from copper bicrystal with a number of 〈1 10〉 tilt GBs that covered a wide range of misorientation angles (θ).Wewill show from this analysis that the mechanic behavior of GBs and the energy barrier of dislocation nucleation from GBs are closely related to the lattice crystallographic orientation, GBenergy, and the intrinsic GBstructures. An atomistic analysis of the nucleation mechanisms provided details of this nucleation and emission process that can help us to better understand the dislocation source in GB.
机译:晶界(GB)是同一材料的不同取向晶体之间的界面,它对材料的许多性能都有重要影响。当晶粒尺寸的平均范围或整个范围减小到小于100 nm时,以位错过程为主的常规塑性变形机制变得困难,GB介导的变形机制变得越来越重要。可以在金属多晶材料的强度和可塑性中发挥重要作用的机制之一是GB的位错的异质形核和发射。在这项研究中,我们进行了分子动力学模拟,研究了具有多个〈1 10〉倾斜GBs的双晶铜的位错形核,其覆盖了大范围的取向错误角(θ)。我们将从该分析中证明GBs的力学行为GBs位错成核的能垒与晶格晶体取向,GBenergy和固有GB结构密切相关。对成核机理的原子分析提供了该成核和发射过程的详细信息,可以帮助我们更好地了解GB中的位错来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号